ISSUE

- We can compute upper-bounds on the costs of a specific algorithmic solution to a problem.
- To design better algorithms, it is also important to compute lower-bounds on the cost of solving a problem algorithmically, i.e. the minimum cost of any algorithmic solution to a particular problem.
- In other words, in addition to computing the O() cost of an <u>algorithm</u>, it is useful to be able to calculate the $\Omega()$ cost of a <u>problem</u>
- If a problem is known to have a $\Omega(f)$ lower bound cost and it has a known algorithmic solution which is O(f), then the bound f is said to be **tight**.

Problem	Lower bound	Tightness
Sorting an array of n elements	$\Omega(n \log n)$	Yes
Sorting an array of n elements	$\Omega(n)$	
Searching in a sorted array of n elements	$\Omega(\log n)$	
Element uniqueness of n elements	$\Omega(n \log n)$	
<i>n</i> -digit integer multiplication	$\Omega(n)$	
Addition of two $n \times n$ matrices	$\Omega(n^2)$	
Multiplication of two $n \times n$ matrices	$\Omega(n^2)$	

TRIVIAL LOWER BOUNDS

Approach

- For any problem which must calculate m outputs out of n inputs, any algorithmic solution will at least "read" the n inputs and "write" the m outputs.
- The minimum cost of an algorithmic solution to a problem with n inputs and m outputs is max(n,m).
- Be careful in deciding how many elements must be processed e.g. searching for an element in a sorted array

Examples

- Finding maximum of n elements: n inputs, 1 output
- Sorting an array of n elements: n inputs, n outputs
- Evaluating the polynomial $a_nx^n + a_{n-1}x^{n-1} + \dots + a_2x^2 + a_1x^1 + a_0x^0$
- Any problem that generates an $n \times m$ matrix
- Generating all the permutations of n elements
- Generating all the subsets of a set of n elements

DECISION TREES

Approach

- Some algorithms compare the inputs against each other
- Build a **decision tree**: tree which shows all the possible comparisons and their outcomes.
 - Internal nodes represent comparisons.
 - Leaves represent outcomes.
- Number of comparisons in worst case = depth of tree = longest length between root and any of its leaves.

Example - Sorting

• Sorting: decision tree for comparison based sort of 3 distinct elements

- Any comparison-based sorting algorithm can be represented by a decision tree
- Number of leaves (possible outcomes) \geq n! (# of permutations)
- Height of binary tree with n! leaves $\geq [\log_2 n!]$
- Minimum number of comparisons in the worst case $\geq [\log_2 n!]$ for any comparison-based sorting algorithm
- $[log_2n!] \approx n log_2n$
- This lower bound is tight (merge sort)

CPS 616 LIMITATIONS OF ALGORITHMIC APPROACHES

ADVERSARY ARGUMENTS

Definition

Adversary argument: a method of proving a lower bound by playing role of adversary that makes algorithm work the hardest by adjusting input

Approach

- Algorithm A is a correct algorithm to solve a problem. It has an adversary D
- A asks D a set of questions, and D is allowed to answer in such a way to make A ask as many questions are possible.
- The number of questions represents the worst case performance of the algorithm

Example - Finding number in a set

- Problem: "Guess " a number between 1 and n with yes/no comparison questions
- Adversary D: Puts the number in a larger of the two subsets generated by last question
- D can force A to ask $\lceil \log_2 n \rceil$ questions
 - \rightarrow Searching through a sorted list costs $\Omega(\log_2 n)$

Example - Merging two sorted lists of size n

• Problem: Merging two sorted lists of size n

 $a_1 < a_2 < \ldots < a_n$ and $b_1 < b_2 < \ldots < b_n$

- Adversary: $a_i < b_j$ iff i < j
- Output $b_1 < a_1 < b_2 < a_2 < \ldots < b_n < a_n$

requires 2n-1 comparisons of adjacent elements

PROBLEM REDUCTION

Approach

- Need a lower bound for problem P
- You know that problem P is at least as hard as problem Q (i.e. P might be harder/more expensive than Q)
- You know that problem Q has a lower bound Ω(f) (i.e. Q is at least as expensive as C.f for some constant C)
- You can conclude that $\Omega(f)$ is also a lower bound for P

Example - Euclidian Minimum Spanning Tree

- Problem P: Find Minimum Spanning Tree for n points in Cartesian plane. Note that this is not the same problem as finding the MST of a graph. We need a lower bound for this problem.
- Problem Q:
 - Element uniqueness problem: are there duplicates in a set of n values?
 - It is known that $cost(Q) \in \Omega$ (n logn)
- Want to show that P is at least as hard as Q, i.e. Cost(P) ≥ Cost(Q) to conclude that cost(P) ∈ Ω (n logn)
- Reduce Q to P, i.e. Solve Q with P
 - Transform each element x of Q into a point (x,0) $Cost_1 \in \theta(n)$
 - Find MST for these points $Cost_2 = Cost(P)$
 - − Traverse MST to look for a zero-length edge Cost₃ ∈ θ(n) because MST has n-1 edges
- Reasoning by contradiction:
 - If Cost(P) can be asymptotically lower that Ω (n logn)
 i.e Cost(P) ∈ o(n logn)
 - Then Q can be solved at that lower cost + $\theta(n)$
 - But any cost which is $\theta(n)$ is also $o(n \log n)$
 - i.e Q can be solved using two components which are both o(n log n)
 i.e. Q ∈ o(n logn)

this contradicts the fact that $cost(Q) \in \Omega$ (n logn)