ISSUE

- We can compute upper-bounds on the costs of a specific algorithmic solution to a problem.
- To design better algorithms, it is also important to compute lower-bounds on the cost of solving a problem algorithmically, i.e. the minimum cost of any algorithmic solution to a particular problem.
- In other words, in addition to computing the $\mathbf{O}()$ cost of an algorithm, it is useful to be able to calculate the $\boldsymbol{\Omega}()$ cost of a problem
- If a problem is known to have a $\Omega(\mathrm{f})$ lower bound cost and it has a known algorithmic solution which is $\mathrm{O}(\mathrm{f})$, then the bound f is said to be tight.

Problem	Lower bound	Tightness
Sorting an array of n elements	$\Omega(n \log n)$	Yes
Sorting an array of n elements	$\Omega(n)$	
Searching in a sorted array of n elements	$\Omega(\log n)$	
Element uniqueness of n elements	$\Omega(n \log n)$	
n-digit integer multiplication	$\Omega(n)$	
Addition of two $n \times n$ matrices	$\Omega\left(n^{2}\right)$	
Multiplication of two $n \times n$ matrices	$\Omega\left(n^{2}\right)$	

TRIVIAL LOWER BOUNDS

Approach

- For any problem which must calculate m outputs out of n inputs, any algorithmic solution will at least "read" the n inputs and "write" the m outputs.
- The minimum cost of an algorithmic solution to a problem with n inputs and m outputs is $\max (\mathrm{n}, \mathrm{m})$.
- Be careful in deciding how many elements must be processed - e.g. searching for an element in a sorted array

Examples

- Finding maximum of n elements: n inputs, 1 output
- Sorting an array of n elements: n inputs, n outputs
- Evaluating the polynomial $a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x^{1}+a_{0} x^{0}$
- Any problem that generates an $n \times m$ matrix
- Generating all the permutations of n elements
- Generating all the subsets of a set of n elements

DECISION TREES

Approach

- Some algorithms compare the inputs against each other
- Build a decision tree: tree which shows all the possible comparisons and their outcomes.
- Internal nodes represent comparisons.
- Leaves represent outcomes.
- Number of comparisons in worst case $=$ depth of tree $=$ longest length between root and any of its leaves.

Example - Sorting

- Sorting: decision tree for comparison based sort of 3 distinct elements

- Any comparison-based sorting algorithm can be represented by a decision tree
- Number of leaves (possible outcomes) $\geq \mathrm{n}$! (\# of permutations)
- Height of binary tree with $n!$ leaves $\geq\left\lceil\log _{2} n!\right\rceil$
- Minimum number of comparisons in the worst case $\geq\left\lceil\log _{2} n!\right\rceil$ for any comparison-based sorting algorithm
- $\left\lceil\log _{2} n!\right\rceil \approx n \log _{2} n$
- This lower bound is tight (merge sort)

ADVERSARY ARGUMENTS

Definition

Adversary argument: a method of proving a lower bound by playing role of adversary that makes algorithm work the hardest by adjusting input

Approach

- Algorithm A is a correct algorithm to solve a problem. It has an adversary D
- A asks D a set of questions, and D is allowed to answer in such a way to make A ask as many questions are possible.
- The number of questions represents the worst case performance of the algorithm

Example - Finding number in a set

- Problem: "Guess " a number between 1 and n with yes/no comparison questions
- Adversary D: Puts the number in a larger of the two subsets generated by last question
- D can force A to ask $\left\lceil\log _{2} n\right\rceil$ questions
\rightarrow Searching through a sorted list costs $\Omega\left(\log _{2} n\right)$

Example - Merging two sorted lists of size n

- Problem: Merging two sorted lists of size n

$$
\mathrm{a}_{1}<\mathrm{a}_{2}<\ldots<\mathrm{a}_{\mathrm{n}} \text { and } \mathrm{b}_{1}<\mathrm{b}_{2}<\ldots<\mathrm{b}_{\mathrm{n}}
$$

- Adversary: $\mathrm{a}_{\mathrm{i}}<\mathrm{b}_{\mathrm{j}}$ iff $\mathrm{i}<\mathrm{j}$
- Output $\mathrm{b}_{1}<\mathrm{a}_{1}<\mathrm{b}_{2}<\mathrm{a}_{2}<\ldots<\mathrm{b}_{\mathrm{n}}<\mathrm{a}_{\mathrm{n}}$
requires $2 \mathrm{n}-1$ comparisons of adjacent elements

PROBLEM REDUCTION

Approach

- Need a lower bound for problem P
- You know that problem P is at least as hard as problem Q
(i.e. P might be harder/more expensive than Q)
- You know that problem Q has a lower bound $\Omega(\mathrm{f})$
(i.e. Q is at least as expensive as C.f for some constant C)
- You can conclude that $\Omega(\mathrm{f})$ is also a lower bound for P

Example - Euclidian Minimum Spanning Tree

- Problem P: Find Minimum Spanning Tree for n points in Cartesian plane.

Note that this is not the same problem as finding the MST of a graph.
We need a lower bound for this problem.

- Problem Q:
- Element uniqueness problem: are there duplicates in a set of n values?
- It is known that $\operatorname{cost}(\mathrm{Q}) \in \Omega(\mathrm{n} \operatorname{logn})$
- Want to show that P is at least as hard as Q , i.e. $\operatorname{Cost}(\mathrm{P}) \geq \operatorname{Cost}(\mathrm{Q})$ to conclude that $\operatorname{cost}(\mathrm{P}) \in \Omega(\mathrm{n} \operatorname{logn})$
- Reduce Q to P , i.e. Solve Q with P
- Transform each element x of Q into a point $(x, 0) \quad \operatorname{Cost}_{1} \in \theta(n)$
- Find MST for these points $\quad \operatorname{Cost}_{2}=\operatorname{Cost}(\mathrm{P})$
- Traverse MST to look for a zero-length edge $\quad \operatorname{Cost}_{3} \in \theta(n)$ because MST has n-1 edges
- Reasoning by contradiction:
- If $\operatorname{Cost}(\mathrm{P})$ can be asymptotically lower that $\Omega(\mathrm{n} \operatorname{logn})$ i.e $\operatorname{Cost}(P) \in o(n \operatorname{logn})$
- Then Q can be solved at that lower cost $+\theta(\mathrm{n})$
- But any cost which is $\theta(n)$ is also $o(n \operatorname{logn})$
- i.e Q can be solved using two components which are both $\mathrm{o}(\mathrm{n} \log \mathrm{n})$ i.e. $\mathrm{Q} \in \mathrm{o}(\mathrm{n} \operatorname{logn})$
this contradicts the fact that $\operatorname{cost}(\mathrm{Q}) \in \Omega(\mathrm{n} \operatorname{logn})$

