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ISSUE 

• We can compute upper-bounds on the costs of a specific algorithmic solution 

to a problem.  

• To design better algorithms, it is also important to compute lower-bounds on 

the cost of solving a problem algorithmically, i.e.  the minimum cost of any 

algorithmic solution to a particular problem. 

• In other words, in addition to computing the O() cost of an algorithm, it is 

useful to be able to calculate the Ω() cost of a problem 

• If a problem is known to have a Ω(f) lower bound cost and it has a known 

algorithmic solution which is O(f), then the bound f is said to be tight.  

 

Problem Lower bound Tightness 

Sorting an array of n elements (n log n)                           Yes 

Sorting an array of n elements (n)  

Searching in a sorted array of n elements (log n)                            

Element uniqueness of n elements                               (n log n)                            

n-digit integer multiplication               (n)  

Addition of  two n×n matrices        (n2)                             

Multiplication of two n×n matrices        (n2)                             

TRIVIAL LOWER BOUNDS 

Approach 

• For any problem which must calculate m outputs out of n inputs, any 

algorithmic solution will at least "read" the n inputs and "write" the m 

outputs. 

• The minimum cost of an algorithmic solution to a problem with n inputs and 

m outputs is max(n,m). 

• Be careful in deciding how many elements must be processed – e.g. searching 

for an element in a sorted array 

Examples 

• Finding maximum of n elements: n inputs, 1 output 

• Sorting an array of n elements: n inputs, n outputs 

• Evaluating the polynomial anx
n + an-1x

n-1 + ... + a2x
2 + a1x

1 + a0x
0 

• Any problem that generates an n×m matrix 

• Generating all the permutations of n elements 

• Generating all the subsets of a set of n elements 
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DECISION TREES 

Approach 

• Some algorithms compare the inputs against each other 

• Build a decision tree: tree which shows all the possible comparisons and their 

outcomes.   

 Internal nodes represent comparisons.   

 Leaves represent outcomes. 

• Number of comparisons in worst case = depth of tree = longest length 

between root and any of its leaves. 

Example - Sorting 

• Sorting: decision tree for comparison based sort of 3 distinct elements 

 
 Any comparison-based sorting algorithm can be represented by a decision 

tree 

 Number of leaves (possible outcomes) ≥  n! (# of permutations) 

 Height of binary tree with n! leaves  ≥  ⌈log2n!⌉ 
 Minimum number of comparisons in the worst case ≥  ⌈log2n!⌉ for any 

comparison-based sorting algorithm 

 ⌈log2n!⌉  n log2n 

 This lower bound is tight (merge sort) 
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ADVERSARY ARGUMENTS 

Definition 

Adversary argument: a method of proving a lower bound by playing role of 

adversary that makes algorithm work the hardest by adjusting input 

Approach 

• Algorithm A is a correct algorithm to solve a problem.  It has an adversary D  

• A asks D a set of questions, and D is allowed to answer in such a way to make 

A ask as many questions are possible. 

• The number of questions represents the worst case performance of the 

algorithm 

Example - Finding number in a set 

• Problem: “Guess ” a number between 1 and n with yes/no comparison 

questions 

• Adversary D:  Puts the number in a larger of the two subsets generated by last 

question 

• D can force A to ask  log2n questions  

 Searching through a sorted list costs Ω(log2n) 

Example - Merging two sorted lists of size n 

• Problem: Merging two sorted lists of size n 

   a1 < a2 < … < an  and  b1 < b2 < … < bn  

• Adversary: ai < bj  iff  i < j 

• Output  b1 < a1 < b2 < a2 < … < bn < an  

requires 2n-1 comparisons of adjacent  elements 
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PROBLEM REDUCTION 

Approach 

• Need a lower bound for problem P 

• You know that problem P is at least as hard as problem Q    

 (i.e. P might be harder/more expensive than Q) 

• You know that problem Q has a lower bound Ω(f)    

 (i.e. Q is at least as expensive as C.f for some constant C) 

• You can conclude that Ω(f) is also a lower bound for P 

Example - Euclidian Minimum Spanning Tree 

• Problem P: Find Minimum Spanning Tree for n points in Cartesian plane.

 Note that this is not the same problem as finding the MST of a graph.   

 We need a lower bound for this problem. 

• Problem Q:  

 Element uniqueness problem: are there duplicates in a set of n values?  

 It is known that cost(Q) ∈ Ω (n logn) 

• Want to show that P is at least as hard as Q, i.e. Cost(P)  Cost(Q)  

 to conclude that cost(P) ∈ Ω (n logn) 

• Reduce Q to P, i.e. Solve Q with P 

 Transform each element x of Q into a point (x,0) Cost1 ∈ θ(n) 

 Find MST for these points     Cost2 = Cost(P) 

 Traverse MST to look for a zero-length edge  Cost3 ∈ θ(n) 

 because MST has n-1 edges 

• Reasoning by contradiction: 

 If Cost(P) can be asymptotically lower that Ω (n logn) 

i.e Cost(P) ∈ o(n logn) 

 Then Q can be solved at that lower cost + θ(n) 

 But any cost which is  θ(n) is also o(n logn) 

 i.e Q can be solved using two components which are both o(n log n) 

i.e. Q ∈ o(n logn)  

this contradicts the fact that cost(Q) ∈ Ω (n logn) 


