
CPS 616 LIMITATIONS OF ALGORITHMIC APPROACHES 11 - 1

ISSUE

• We can compute upper-bounds on the costs of a specific algorithmic solution

to a problem.

• To design better algorithms, it is also important to compute lower-bounds on

the cost of solving a problem algorithmically, i.e. the minimum cost of any

algorithmic solution to a particular problem.

• In other words, in addition to computing the O() cost of an algorithm, it is

useful to be able to calculate the Ω() cost of a problem

• If a problem is known to have a Ω(f) lower bound cost and it has a known

algorithmic solution which is O(f), then the bound f is said to be tight.

Problem Lower bound Tightness

Sorting an array of n elements (n log n) Yes

Sorting an array of n elements (n)

Searching in a sorted array of n elements (log n)

Element uniqueness of n elements (n log n)

n-digit integer multiplication (n)

Addition of two n×n matrices (n2)

Multiplication of two n×n matrices (n2)

TRIVIAL LOWER BOUNDS

Approach

• For any problem which must calculate m outputs out of n inputs, any

algorithmic solution will at least "read" the n inputs and "write" the m

outputs.

• The minimum cost of an algorithmic solution to a problem with n inputs and

m outputs is max(n,m).

• Be careful in deciding how many elements must be processed – e.g. searching

for an element in a sorted array

Examples

• Finding maximum of n elements: n inputs, 1 output

• Sorting an array of n elements: n inputs, n outputs

• Evaluating the polynomial anx
n + an-1x

n-1 + ... + a2x
2 + a1x

1 + a0x
0

• Any problem that generates an n×m matrix

• Generating all the permutations of n elements

• Generating all the subsets of a set of n elements

CPS 616 LIMITATIONS OF ALGORITHMIC APPROACHES 11 - 2

DECISION TREES

Approach

• Some algorithms compare the inputs against each other

• Build a decision tree: tree which shows all the possible comparisons and their

outcomes.

 Internal nodes represent comparisons.

 Leaves represent outcomes.

• Number of comparisons in worst case = depth of tree = longest length

between root and any of its leaves.

Example - Sorting

• Sorting: decision tree for comparison based sort of 3 distinct elements

 Any comparison-based sorting algorithm can be represented by a decision

tree

 Number of leaves (possible outcomes) ≥ n! (# of permutations)

 Height of binary tree with n! leaves ≥ ⌈log2n!⌉
 Minimum number of comparisons in the worst case ≥ ⌈log2n!⌉ for any

comparison-based sorting algorithm

 ⌈log2n!⌉  n log2n

 This lower bound is tight (merge sort)

CPS 616 LIMITATIONS OF ALGORITHMIC APPROACHES 11 - 3

ADVERSARY ARGUMENTS

Definition

Adversary argument: a method of proving a lower bound by playing role of

adversary that makes algorithm work the hardest by adjusting input

Approach

• Algorithm A is a correct algorithm to solve a problem. It has an adversary D

• A asks D a set of questions, and D is allowed to answer in such a way to make

A ask as many questions are possible.

• The number of questions represents the worst case performance of the

algorithm

Example - Finding number in a set

• Problem: “Guess ” a number between 1 and n with yes/no comparison

questions

• Adversary D: Puts the number in a larger of the two subsets generated by last

question

• D can force A to ask log2n questions

 Searching through a sorted list costs Ω(log2n)

Example - Merging two sorted lists of size n

• Problem: Merging two sorted lists of size n

 a1 < a2 < … < an and b1 < b2 < … < bn

• Adversary: ai < bj iff i < j

• Output b1 < a1 < b2 < a2 < … < bn < an

requires 2n-1 comparisons of adjacent elements

CPS 616 LIMITATIONS OF ALGORITHMIC APPROACHES 11 - 4

PROBLEM REDUCTION

Approach

• Need a lower bound for problem P

• You know that problem P is at least as hard as problem Q

 (i.e. P might be harder/more expensive than Q)

• You know that problem Q has a lower bound Ω(f)

 (i.e. Q is at least as expensive as C.f for some constant C)

• You can conclude that Ω(f) is also a lower bound for P

Example - Euclidian Minimum Spanning Tree

• Problem P: Find Minimum Spanning Tree for n points in Cartesian plane.

 Note that this is not the same problem as finding the MST of a graph.

 We need a lower bound for this problem.

• Problem Q:

 Element uniqueness problem: are there duplicates in a set of n values?

 It is known that cost(Q) ∈ Ω (n logn)

• Want to show that P is at least as hard as Q, i.e. Cost(P)  Cost(Q)

 to conclude that cost(P) ∈ Ω (n logn)

• Reduce Q to P, i.e. Solve Q with P

 Transform each element x of Q into a point (x,0) Cost1 ∈ θ(n)

 Find MST for these points Cost2 = Cost(P)

 Traverse MST to look for a zero-length edge Cost3 ∈ θ(n)

 because MST has n-1 edges

• Reasoning by contradiction:

 If Cost(P) can be asymptotically lower that Ω (n logn)

i.e Cost(P) ∈ o(n logn)

 Then Q can be solved at that lower cost + θ(n)

 But any cost which is θ(n) is also o(n logn)

 i.e Q can be solved using two components which are both o(n log n)

i.e. Q ∈ o(n logn)

this contradicts the fact that cost(Q) ∈ Ω (n logn)

